
 Recursion relations in CFT and N=2 SYM theory

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

JHEP12(2009)038

(http://iopscience.iop.org/1126-6708/2009/12/038)

Download details:

IP Address: 80.92.225.132

The article was downloaded on 01/04/2010 at 13:19

Please note that terms and conditions apply.

The Table of Contents and more related content is available

Home Search Collections Journals About Contact us My IOPscience

http://www.iop.org/Terms_&_Conditions
http://iopscience.iop.org/1126-6708/2009/12
http://iopscience.iop.org/1126-6708/2009/12/038/related
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J
H
E
P
1
2
(
2
0
0
9
)
0
3
8

Published by IOP Publishing for SISSA

Received: October 9, 2009

Accepted: November 16, 2009

Published: December 10, 2009

Recursion relations in CFT and N=2 SYM theory

Rubik Poghossian
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1 Introduction

Recently Alday Gaiotto and Tachikawa [1] have found a very remarkable relation between

generalized partition functions [2–5] in certain classes of N = 2 conformal SU(2) quiver

gauge theories [6] (see [7] for instanton counting in quiver theories) and correlation func-

tions of 2d Liouville theory on Riemann surfaces. In this paper I will consider only the

”holomorphic” version of AGT conjecture concerning the relation between instanton part

of the partition function in gauge theory and the conformal block in 2d CFT. More pre-

cisely I’ll concentrate on SU(2) gauge theories with four fundamental hypermultiplets and

the theory with an adjoint hypermultiplet. This choice is of particular interest since it

is related to such fundamental objects of 2d CFT as 4-point and torus 1-point conformal

blocks. I will adopt in this paper a slightly generalized version of the original AGT conjec-

ture and will not assume a specific relation between Nekrasov’s deformation parameters ǫ1

and ǫ2, a point emphasized also in recent works [8, 9]. Another deviation from the initial

AGT will be discussion of non-conformal gauge theories (a possibility also discussed in very

recent papers [9, 10] from a different perspective).

In all further discussions the recursion relation for the CFT 4-point conformal block

discovered by Alexei Zamolodchikov [11] a quarter of century ago will play the central role.

Unfortunately this brilliant work is not widely known even by the specialists.

The section 2 is a breaf introduction to the Zamolodchikov’s recursion relation.

The section 3 is devoted to the description of the instanton part of the generalized par-

tition function in N = 2 SYM theories introdced by Nekrasov [2]. Representation of the

– 1 –



J
H
E
P
1
2
(
2
0
0
9
)
0
3
8

Nekrasov partition function as a sum over (multiple) Young tableau in a way suitable for

practical higher order instanton calculations is based on the character formula describing

decomposition of the tangent space of the moduli space of instantons under the combined

(global gauge plus space-time rotations) torus action around fixed points [3]. The Nekrasov

partition function for the cases with different types of extra hypermultiplets can be read

of from the character formula incorporating specific factors which depend on the represen-

tations of the hypermultiplets [2, 4, 5]. In this section for further reference the cases of

fundamental or adjoint hypermultiplets are presented in some details.

In section 4 the Zamolodcikov recursion relation for 4-point conformal block is trans-

lated into the relation for the partition function with four fundamentals. As a particular

application the exact large vev asymptotic of the partition function is derived and the lead-

ing term is checked against the Seiberg-Witten curve [12] analysis. Considering the large

mass limit when one or more fundamentals decouple the analogous relations for less number

of hypermultiplets are derived. The recursion relation for the case without extra matter

is especially simple and may serve as a convenient starting point for investigation of the

analytical properties of the prepotential in presence of nonzero gravitational background.

In section 5 a similar recursion relation is proposed for the case of adjoint hypermulti-

plet. The conjectured relation has been checked against explicit instanton calculations up

to order 5. Again the AGT conjecture leads to analogous (previously unknown in CFT)

relation for the torus 1-point conformal block. Comparison of the results of this sections

with those of previous one leads to a surprising conclusion: the torus 1-point block is

closely related to specific sphere 4-point block or alternatively the generalized N = 2 SYM

partition function with adjoint hypermultiplet is related to the partition function with four

hypermultiplets.

Finally the appendix A briefly describes how to calculate the torus one point conformal

block from CFT first principles.

2 Zamolodchikov’s q-recursion relation for CFT conformal block

Though there is no closed analytic expression for the general 4-point conformal block,

Al. Zamolodchikov has found an extremely convenient recursion (Russian doll type) rela-

tion, which allows to calculate the conformal block up to the desired order in x-expansion.

Below I give a brief description of Zamolodchikov’s recursion relation closely following

to [13]. It is convenient to represent the generic 4-point conformal block F as [11]

F(∆i,∆, x) = (16q)−α2

xQ2/4−∆1−∆2(1 − x)Q
2/4−∆1−∆3

× θ3(q)
3Q2−4(∆1+∆2+∆3+∆4)H(µi,∆, q) (2.1)

where

θ3(q) =

∞
∑

n=−∞
qn2

(2.2)

– 2 –
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Here ∆i, i = 1, 2, 3, 4 - the dimensions of the external (primary) fields (placed at the points

x, 0, 1 and ∞ respectively) and ∆ - the internal dimension are parametrized by

∆i =
Q2

4
− λ2

i , ∆ =
Q2

4
− α2 , (2.3)

where Q is related to the central charge of the Virasoro algebra through

c = 1 − 6Q2 (2.4)

For further purposes I parametrise the background charge Q via

Q =
ǫ1 + ǫ2√

ǫ1ǫ2
. (2.5)

and introduce the parameters µi (later to be related with the masses of the anti-fundamental

hyper-multiplets under the AGT conjecture) as linear combinations of λi:

µ1 = λ1 + λ2 +
Q

2
, µ2 = λ1 − λ2 +

Q

2
,

µ3 = λ3 + λ4 +
Q

2
, µ4 = λ3 − λ4 +

Q

2
. (2.6)

Comparing with the standard Q = b + 1/b we see that b =
√

ǫ1/ǫ2.
1 The parameter

q = eiπτ is related to the coordinate x:

τ = i
K(1 − x)

K(x)
, (2.7)

where

K(x) =
1

2

∫ 1

0

dt
√

t(1 − t)(1 − xt)
. (2.8)

Conversely

x =
θ4
2(q)

θ4
3(q)

, (2.9)

where

θ2(q) =
∞
∑

n=−∞
q(n+1/2)2 . (2.10)

Here are the first few terms of the small x expansion of q:

16q = x +
x2

2
+

21x3

64
+

31x4

128
+ O(x5) (2.11)

1In fact upon simple rescaling of the masses and vev’s of a N = 2 conformal SYM theory by the factor

1/
√

ǫ1ǫ2, all expressions become homogeneous in ǫ1,2. Thus there is no need to follow [1] and restrict oneself

to the case ǫ1ǫ2 = 1.

– 3 –
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The asymptotic behaviour of the conformal block at large internal dimension ∆ → ∞ has

been established in [11] which in terms of the function H is very simple:

H = 1 + O(∆) (2.12)

Now we are ready to state Al.Zamolodchikov’s q-recursion relation:

H(µi,∆, q) = 1 +

∞
∑

m,n=1

qmnR
(4)
m,n

∆ − ∆m,n
H(µi,∆m,n + mn, q), (2.13)

where the poles are located at

∆m,n =
Q2

4
− λ2

m,n (2.14)

with

λm,n =
mǫ1 + nǫ2

2
√

ǫ1ǫ2
(2.15)

i.e. exactly at the degenerated internal dimensions. Finally

R(f)
m,n =

2
∏

r,s

∏f
i=1(µi − Q

2 − λr,s)
∏′

k,l λk,l

, (2.16)

where the products are over the pairs (r, s) and (k, l) within the range

r = −m + 1,−m + 3, . . . ,m − 1

s = −n + 1,−n + 3, . . . , n − 1

k = −m + 1,−m + 2, . . . ,m − 1,m

l = −n + 1,−n + 2, . . . , n − 1, n

while prime over the product in the denominator indicates that the pairs (m,n) and (0, 0)

should be suppressed.

Note that the function H in order to satisfy (2.13) should be totally symmetric w.r.t.

permutations of µi’s. Less obvious is the symmetry with respect to reflections µi → Q−µi

accompanied with q → −q which is a consequence of λ−r,−s = −λr,s. There is no doubt

that these remarkably reach symmetries of the 4-point block and their consequences are

worth to be explored in greater details.

In order to give some flavor how the recursion relation (2.13) works in practice I give

the result of iteration up to the order q2

H = 1 +
R

(f)
1,1q

∆ − ∆1,1
+

(

(R
(f)
1,1 )2

∆ − ∆1,1
+

R
(f)
1,2

∆ − ∆1,2
+

R
(f)
2,1

∆ − ∆2,1

)

q2 + O(q3) (2.17)

Another elementary but useful observation is that at the order ql one encounters poles at

∆ = ∆n,m with nm ≤ l.

– 4 –
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3 Generalized partition function of N = 2 SYM with fundamental or

adjoint hyper-multiplets

In the seminal paper [2] Nekrasov has proposed to generalize the Seiberg-Witten prepo-

tential including into the game besides unbroken gauge transformation also the space time

rotations which allowed to localize instanton contributions around finite number of fixed

points. The general problem of computing the contribution of a given fixed point has found

its final solution in [3]. When the gauge group is U(N) the fixed points are in one to one

correspondence with the arrays of Young tableau ~Y = (Y1, . . . , YN ) with total number of

boxes |~Y | being equal to the instanton charge k. The (holomorphic) tangent space of the

moduli space of instantons decomposes into sum of (complex) one dimensional irreducible

representations of the Cartan subgroup of U(N) × O(4) [3]

χ =

N
∑

α,β=1

eβe−1
α







∑

s∈Yα

(

T
−lYβ

(s)

1 T
aYα (s)+1
2

)

+
∑

s∈Yβ

(

T
lYα (s)+1
1 T

−aYβ
(s)

2

)







, (3.1)

where (e1, . . . , eN ) = (eia1 , . . . , eiaN ) ∈ U(1)N ⊂ U(N) and (T1, T2) = (eiǫ1 , eiǫ2) ∈ U(1)2 ⊂
O(4) , aY (s) (lYα(s)) is the distance of the right edge of the box s from the limiting

polygonal curve of the Young tableaux Y in horizontal (vertical) direction taken with the

sign plus if the box s ∈ Yα and with the sign minus otherwise.

One-dimensional subgroups of the above mentioned N + 2 dimensional torus are gen-

erated by the vector fields parametrized by a1, . . . , aN and ǫ1, ǫ2. From the physical point

of view aα are the vacuum expectation values of the complex scalar of the N = 2 gauge

multiplet and ǫ1, ǫ2 specify a particular gravitational background now commonly called

Ω-background. The contribution of a fixed point to the Nekrasov partition function in

the basic N = 2 case without extra hypermultiplets is simply the inverse determinant of

the above mentioned vector field action on the tangent space at given fixed point. All the

eigenvalues of this vector field can be directly read off from the character formula (3.1) .

The result is [3]

Pgauge(~Y ) =

N
∏

α,β=1

∏

s∈Yα

1

Eα,β(s)(ǫ − Eα,β(s))
, (3.2)

where

Eα,β = aβ − aα − ǫ1lYβ
(s) + ǫ2(aYα(s) + 1) (3.3)

In general the theory may include ”matter” hypermultiplets in various representations of

the gauge group. In that case one should multiply the gauge multiplet contribution (3.2)

by another factor Pmatter. In this paper we will consider the case of several (up to four)

hypermultiplets in anti-fundamental representation and also the theory with an adjoint

– 5 –
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hypermultiplet (so called N = 2∗). The respective matter factors read [4]

Pantifund(~Y ) =

f
∏

l=1

N
∏

α=1

∏

sα∈Yα

(χα,sα + ml) (3.4)

Padj(~Y ) =

N
∏

α,β=1

∏

s∈Yα

(Eα,β(s) − M)(ǫ − Eα,β(s) − M), (3.5)

where ml, M are the masses of the hypermultiplets, ǫ = ǫ1 + ǫ2,

χα,sα = aα + (isα − 1)ǫ1 + (jsα − 1)ǫ2 (3.6)

and isα , jsα are the numbers of the column and the row of the tableaux Yα where the box

sα is located. Note also that in order to get a fundamental hypermultiplet instead of an

antifundamental, one should simply replace the respective mass ml by ǫ − ml in (3.4). In

terms of above defined quantities the instanton part of Nekrasov partition function reads2

Zinst =
∑

~Y

x|~Y |Pgauge(~Y )Pmatter(~Y ) (3.7)

4 AGT conjecture for the four-point conformal block and recursion re-

lations for N = 2 SYM with extra fundamentals

From now on we will consider only the gauge group SU(2) and will set the vacuum expec-

tation values a1 = −a2 = a.

4.1 f=4 antifundamentals

According to the AGT conjecture for the case of f = 4 extra antifundamental hypermulti-

plets one has [1]

Z
(4)
inst(a,mi, x) = x∆1+∆2−∆(1 − x)2(λ1+ Q

2
)(λ3+ Q

2
)F(∆,∆i, x), (4.1)

where Z
(4)
inst(a,mi, x) is given by (3.4), (3.7) specialized to the case of the gauge group SU(2)

and f = 4 flavours. The vev a = α
√

ǫ1ǫ2 and masses mi = µi
√

ǫ1ǫ2 are related to the

conformal dimensions ∆, ∆i through (2.3), (2.6). Equivalently, taking into account (2.1):

Z
(4)
inst(a,mi, x) =

(

x

16q

)α2

(1 − x)
1
4
(Q−

P4
i=1 µi)

2

× [θ3(q)]
2

P4
i=1(µ

2
i −Qµi)+Q2

H(µi,∆, q). (4.2)

Thus Zamolodchikov’s recursion relation (2.13) for four point conformal block automat-

ically provides a very efficient tool also for calculating the partition function of the SU(2)

SYM theory with extra four (anti) fundamental hypermultiplets. One obvious advantage

2I use notation x = e2πiτg with τg the usual gauge theory coupling to avoid confusion with the already

introduced in section 2 parameter q and to make comparison with 2d CFT block transparent.

– 6 –
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of the recursion relation compared to the explicit formula (3.7) is that at each order of the

”renormalized” (through the relation (2.9)) instanton parameter q the former immediately

determines the pole structure in variable ∆ = Q2/4 − α2 (see remark after eq. (2.17)).

Alternatively the formula (3.7) is a sum over all (rapidly growing number of) couples of

Young tableau each term being a simple factorized rational expression. Unfortunately the

poles of the individual terms are extremely redundant: most of the poles after summation

of all terms of given instanton order disappear. In this sense the Zamolodchikov recursion

relation and the explicit formula (3.7) play complementary roles: the recursion relation

provides a powerful tool for investigation of the analytical properties of the Nekrasov par-

tition function while the eq. (3.7) together with eq. (4.2) provide a closed expression for

the four point conformal block. Needless to say both tasks are of considerable importance

and were waiting long time to find a solution.

As a most immediate consequence of eq. (4.2) one learns the asymptotic behaviour of

the partition function at large vev’s

Z
(4)
inst(a,mi, x) ∼

(

x

16q

)
a2

ǫ1ǫ2

(1 − x)
1

4ǫ1ǫ2
(ǫ−

P4
i=1 mi)

2

× [θ3(q)]
1

ǫ1ǫ2

P4
i=1(m2

i +(ǫ−mi)
2−3ǫ2/4) . (4.3)

The instanton part of the Seiberg-Witten prepotential is

FSW
inst = − lim

ǫ1,2→0
ǫ1ǫ2Zinst (4.4)

hence

FSW
inst ∼ a2 log

16q

x
− 1

4

(

4
∑

i=1

mi

)2

log(1 − x) − 2

4
∑

i=1

m2
i log θ3(q) (4.5)

Taking into account eqs. (2.9), (2.11) for the first leading in a2 term one gets

FSW
inst ∼ a2 log

16q

x
= a2

(

x

2
+

13x2

64
+

23x3

192
+

2701x4

32768
+

5057x5

81920
+ · · ·

)

(4.6)

which coincides with the expression given in part B3 of [1]. It would be interesting to

extract the subleading m corrections directly from the Seiberg-Witten curve too.

4.2 f=3 antifundamentals

We have already seen how fruitful is the incorporation of AGT conjecture with Zamolod-

chikov’s recursion relation. In order to get recursion relations also for less number (or even

without) hypermultiplets one can decouple the extra hypermultiplets one after another by

sending the masses to infinity. It is obvious from the eqs. (3.4), (3.7) that to decouple one

of the hypermultiplets (say the one with mass m4) one should renormalise the instanton

parameter x → x/m4 and go to the limit m4 → ∞. Similarly examining Zamolodchikov’s

recursion relation (2.13) we see that there exists a smooth limit for the function H at large

– 7 –
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µ4, provided one simultaneously redefines the parameter q → q/m4 = q/(µ4
√

ǫ1ǫ2). Indeed

for large µ4 limit R
(4)
m,n ∼ µmn

4 R
(3)
m,n. It remains to investigate the behaviour of the prefac-

tors of the function H in (4.2). The analysis is elementary and boils down to expanding

θ3(q) up to first order: θ3 = 1 + 2q + O(q2) and taking into account the relation (2.11)

between q and x (keeping first two terms is enough). Here is the result

Z
(3)
inst(a,mi, x) = e

− x
4ǫ1ǫ2

( x
16

−ǫ+2m1+2m2+2m3)H(3)(µi,∆, q), (4.7)

where q = x
16

√
ǫ1ǫ2

. Again at large ∆ the function H(3)(µi,∆, q) ∼ 1 and satisfies the

recursion relation (2.13) with R
(4)
m,n replaced by R

(3)
m,n (see (2.16)).

4.3 Theories with f = 2, 1 or 0

It is straightforward to repeat the procedure of previous subsection and decouple more (or

even all) hypermultiplets.

• f = 2

Z
(2)
inst(a,m1,m2, x) = e

− x
2ǫ1ǫ2 H(2)(µ1, µ2,∆, q), (4.8)

with q = x
16ǫ1ǫ2

.

• f = 1

Z
(1)
inst(a,m1, x) = H(1)(µ1,∆, q), (4.9)

now with q = x
16(ǫ1ǫ2)3/2 .

• f = 0

Zinst(a, x) = H(0)(∆, q), (4.10)

and q = x
16(ǫ1ǫ2)2

.

The recursion relation for the pure N = 2 theory is especially simple and it is worth to

rewrite it here in intrinsic terms:

Zinst(a, x) = 1 −
∞
∑

m,n=1

xmnRm,n

4a2 − (mǫ1 + nǫ2)2
Zinst((mǫ1 − nǫ2)/2, x), (4.11)

where

Rm,n = 2
′

∏

k,l

(kǫ1 + lǫ2)
−1 , (4.12)

and the range of the product over k, l is the same as in eq. (2.16).

It has been shown in recent papers [9, 10] that when the the number of fundamental

hypermultiplets f < 4 on CFT side one has irregular conformal blocks.

– 8 –
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5 Recursion relation for the case with adjoint hypermultiplet

Encouraged with the success in the cases with fundamental hypermultiplets, it is natural

to expect that a recursion relation of the same kind should exist also for the case of

adjoint hypermultiplet or due to AGT conjecture for the torus 1-point conformal block.

In fact, explicit computation in first few orders of instanon expansion of the generalized

partition function with adjoint and investigation of their large a2 behaviour together with

some intuition gained from the previous examples leads to the desired result. Define the

function Htor by

Z
(adj)
inst (a,M, q) = [η̂(q)]

−2(M−ǫ1)(M−ǫ2)
ǫ1ǫ2 Htor(µ,∆, q) (5.1)

where

η̂(q) =

∞
∏

n=1

(1 − qn) (5.2)

(we set µ = 2M−ǫ
2
√

ǫ1ǫ2
, ∆ = Q2

4 − α2, α = a√
ǫ1ǫ2

and instead of x restore the conventional

notation q for instanton parameter). Then Htor = 1 + O(∆) satisfies the relation

Htor(µ,∆, q) = 1 +

∞
∑

m,n=1

qmnR
(tor)
m,n

∆ − ∆m,n
Htor(µ,∆m,n + mn, q), (5.3)

where

R(tor)
m,n = R(4)

m,n (5.4)

As earlier R
(4)
m,n is given by eq. (2.16) but the four parameters µi are specified as

µ1 =
M

2
√

ǫ1ǫ2
; µ2 =

M + ǫ1

2
√

ǫ1ǫ2
; µ3 =

M + ǫ2

2
√

ǫ1ǫ2
; µ4 =

M + ǫ1 + ǫ2

2
√

ǫ1ǫ2
(5.5)

I have checked the conjecture (5.1), (5.3) up to 5 instantons. The prefactor of Htor in (5.1)

defines the large a2 behaviour of Zadj and hence that of the prepotential

FSW
inst,adj ∼ M2 log η̂(q) (5.6)

in agreement with the result derived from Seiberg-Witten curve (see e.g. [14]).

Incorporating above results with AGT conjecture for adjoint hypermultiplet we find

the equivalent recursion relation for torus 1-point conformal block

Fµ
α (q) = [η̂(q)]−1 Htor(µ,∆, q) (5.7)

Observe that the recursion relation (2.13) together with asymptotic condition (2.12)

uniquely determines H in terms of Rm,n. Thus the eqs. (5.3), (5.4) and (5.5) lead to

conclusion that

Htor(µ,∆, q) = H(µ1, µ2, µ3, µ4,∆, q) (5.8)

– 9 –
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provided the relations (5.5) are hold. This is a very exciting result: the torus 1-point block

is closely related to specific sphere 4-point block on sphere or alternatively the generalized

N = 2 SYM partition function with four hypermultiplets is related to the partition function

with adjoint hypermultiplet. On CFT side e.g. one gets (in the reminder of this section

the relation (2.9) between parameters q and x is always assumed)

Fµ
α (q) = [η̂(q)]−1 (16q)α2

x−Q2/4+∆1+∆2

×(1 − x)−Q2/4+∆1+∆3θ3(q)
−3Q2+4(∆1+∆2+∆3+∆4)F(∆i,∆, x) (5.9)

Owing to already mentioned reach symmetry of the function F for given dimensions ∆ =

Q2/4−α2 and ∆µ = Q2/4−µ2 the choice of ∆i = Q2/4−λ2
i is not unique. The essentially

different choices are

λ1 =
µ

2
; λ2 =

Q

4
; λ3 =

µ

2
; λ4 =

1

4

√

Q2 − 4 (5.10)

and somewhat more sophisticated

λ1 =
µ

2
− 1

8

(

Q +
√

Q2 − 4
)

; λ2 =
1

8

(

Q −
√

Q2 − 4
)

;

λ3 =
µ

2
+

1

8

(

Q +
√

Q2 − 4
)

; λ4 =
1

8

(

Q −
√

Q2 − 4
)

. (5.11)

Since the calculation of the torus 1-point function Fµ
α (q) from first principles of CFT is

less familiar for reader’s convenience I sketch the procedure in the appendix.

The eq.s (4.1), (5.1) and (5.7) straightforwardly lead to analogues (and by no means

less surprising) relation among SYM partition function with four hypermultiplets and the

partition function with adjoint hypermultiplet

Z
(adj)
inst (a,M, q) = [η̂(q)]

−2(M−ǫ1)(M−ǫ2)
ǫ1ǫ2

(

x

16q

)− a2

ǫ1ǫ2

(1 − x)
− 1

4ǫ1ǫ2
(ǫ−P4

i=1 mi)2

× [θ3(q)]
− 1

ǫ1ǫ2

P4
i=1(m2

i +(ǫ−mi)
2−3ǫ2/4) Z

(4)
inst(a,mi, x) (5.12)

Here the masses mi =
√

ǫ1ǫ2 µi (up to permutations) are given by eq. (5.5).
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Note added. After the first version of this paper appeared in arXiv Vl. Fateev, A. Litvi-

nov and S. Ribault kindly informed me about the work [16] where a relation between the

1-point correlation function on the torus and a specific 4-point correlation function on

sphere is established. Contrary to the one, suggested in this article, that relation holds for

different (though simply related) values of the central charge on the sphere and torus. To

avoid confusion let me note also that in present paper the modular parameter of the torus is

related to the parameter q introduced in section 2 via q = exp(2πiτtor), i.e. τtor = τ/2 with

τ given by eq. (2.8) while the modular parameter of the ref. [16] is equal to τ . Naturally the

relation of ref. [16] between correlation functions boils down to a certain relation among

conformal blocks. The condition that this relation and the one conjectured in present paper

are compatible is equivalent to the following non-trivial identity (see eq. (2.1) for definition

of the function H and the eq.’s (2.6), (2.3) which relate its arguments µi to the dimensions

of external fields):

Hb̃(µ̃i, ∆̃, q2) = Hb(µi,∆, q)

where the dependence on the parameter b specifying the central charge is indicated explic-

itly and the remaining parameters are specified as (the parameters established in present

paper are on the first line while those on second line are found in [16]):

µ̃1 =
µ̃

2
+

b̃

4
+

1

4b̃
; µ̃2 =

µ̃

2
+

3b̃

4
+

1

4b̃
; µ̃3 =

µ̃

2
+

b̃

4
+

3

4b̃
; µ̃4 =

µ̃

2
+

3b̃

4
+

3

4b̃

µ1 = µ +
b

4
+

1

2b
; µ2 = µ +

3b

4
+

1

2b
; µ3 = b +

1

2b
; µ4 =

b

2
+

1

2b

and

b̃ =
b√
2

; µ̃ =
√

2µ ; ∆̃ =
(b̃ + 1

b̃
)2

4
− α̃2 ; ∆ =

(b + 1
b )

2

4
− α2 ; α̃ =

α√
2

It should be possible to find a mathematical proof for this identity based on Zamolodchikov

recursion relation (2.13). Direct calculation using the recursion relation (2.13) confirms that

the identity indeed holds up to high orders in q. As a final remark let me note that a careful

analysis shows that the relation between conformal blocks established in this paper can be

promoted to the relation between full correlation functions in Liouville field theory on the

sphere and on torus. This is by no means automatic, and (among other things) requires

a non-trivial factorization property of the specific Liouville structure constant involved in

the construction of torus 1-point function.

A Torus 1-point block

Below is presented the calculation of the one-point conformal block on torus

trα

(

qL0−c/24φµ

)

up to level 2 (in principle the computation can be carried out up to

arbitrary level). Start with (chiral) OPE

φµ(x)φα(0) =
∑

Y

x−∆µ+|Y |βαY
µα L−Y φα(0) =

x−∆µ(1 + xβ1L−1 + x2(β11L2
−1 + β2L−2) + · · · )φα(0) (A.1)
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where for the partition Y = {k1 ≥ k2 ≥ · · · ≥ 0}, |Y | = k1 + k2 + · · · ,

L−Y ≡ L−k1L−k2 · · · (A.2)

and Lk are the standard Virasoro generators. It is well known that the coefficients β in

principle could be calculated level by level using conformal symmetry [15]. In particular

the first few coefficients β explicitly presented in (A.1) are

β{1} =
∆µ

2∆

β{11} =
∆µ (c − 16∆ + (c + 8∆)∆µ)

4∆(c + 2c∆ + 2∆(−5 + 8∆))
,

β
{2}
2 =

(1 + 8∆ − 3∆µ) ∆µ

c + 2c∆ + 2∆(−5 + 8∆)
(A.3)

To calculate the trace the diagonal matrix elements of the OPE of the primary field φM

with the descendants of the field φα are needed. Using the commutation relation

[Ln, φµ(x)] = xn(x∂ + (1 + n)∆µ)φµ(x) (A.4)

one easily finds

φµ(x)L−1φα(0) = x−∆µ(x−1∆µ + (1 + β1(∆µ − 1))L−1 + · · · )φα(0)

φµ(x)L−2φα(0) = x−∆µ(x−1∆µ + (1 + β1(∆µ − 1))L−1 + · · · )φα(0)

φµ(x)L2
−1φα(0) = x−∆µ(x−2(∆µ − 1)(∆µ + 1)(β11L2

−1 + β2L−2)

+x−12(∆µ − 1)L−1 + L2
−1 + · · · )φα(0) (A.5)

It remains to read off the diagonal matrix elements from (A.5) to get the torus one point

block

Fµ
α (q) ≡ q−∆α+ c

24 trα

(

qL0−c/24φµ(1)
)

= 1 +
(

1 + (∆µ − 1) β{1}
)

q

+
(

(∆µ − 1) (∆µ − 2) β{11}2 (∆µ − 1) β{1} + 2 (∆µ − 1) β{2} + 2
)

q2 + · · · (A.6)

It is easy to check that this result is consistent with recursion relation (5.3), (5.7).
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